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Simplifications of the computations of statics and the small vibrations of regular 

mechanical structures are investigated. On the basis of the method of an ele- 

menatry cell it is shown that these simplifications hold for all regular systems 
which are representable as elementary in the sense of some irreduciblerepresen- 
tation of the subgroup D!$ c D$*. where D$r is the space symmetry groupof 
the corresponding infinite regular system. The boundary conditions of such ele- 
mentary systems are described in general form. The essence ofthe simplifications 

is the passage from a computation of the regular construction over to computa- 

tions of a finite number of elementary systems in the sense of the group D$* 
whose types are indicated. The loading of the elementary systems is defined by 
using a developed effective method of decomposing the load of the initial regu- 
lar system. 

A number of investigations [l - 41 is devoted to a study of regular mechanical 
systems. These investigations are associated with translational symmetry of an 
infinite regular system in [ 21, which permitted use of the group representation 
theory apparatus developed for applications [5]. However, the most general and 
complete results in the mechanics of regular systems should be expected in a 
more perfect accounting of the symmetry elements of an infinite regular system. 
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which possesses the space symmetry group ~~~ (l) . In particular, the nature ofall 
the boundary conditions specifying the decoupling (dissociation) of the system 
of equations under investigation for the mechanical problem is successfully cla- 

rified in this paper and specific features of this decoupling are established. 

1. A one-dimensional infinite regular mechanical system s, whose symmetry group 
Drh(r) contains the one-dimensional subgroup Gt of translations with the fundamental 
vector a is considered. The elementary cell & is bounded by the planes IT and n’ 
of the reflections CT and trcr ( t, denotes a translation by the vector ra). It is easy to 
see that n’ = t,., II. 

If u = a-la, then the irreducible representations 7, (a = ku) of the subgroup G, 
are defined by the relationships 

7, (tr) = eia (1.1) 

where any vector k from the Brillouin zone is represented as 

k = au, (1.2) 

Here 7,, is understood to be the v-th 

with the star {au}. 
Three kinds of irreducible stars {au} 

irreducible representation of dimensionality m, 

can be distinguished depending on the absolute 
value of the scalar a : (a) a = U, (b) 1 a 1 = ax, (c) 0 < 1 a 1< n. For the first 
two kinds, m, = m, = 1 and %2,, (a) = (_l)y-1, while 7s” ft,) = - sny (tr) = 1. 
A two-dimensional irreducible representation, whose operator matrix is r,r ($!) = z,(g), 

Vg c Dz,,(l), corresponds to a type (c) star, where the families of the matrix functions 

ra (g) of the scalar argument a are defined as follows: 

cos ra sin ra cos 7-a - sin ra 
7, (b) = II I/ - sinra cosra ’ 7, (44 = 

/I 
_ sin ra 

Ii - cos ra I, 

Let the systems 5’ and SO be in the domains $.r and St,, x (n) E rI n Q,,, 

while z (n’) E n’ n Sz,. Because of the orthogonality of the plane Tz to the vector 

a, by constructing a system of coordinate axes from an axis with the direction u and 
two orthogonal axes the linear displacement of any point x E & in the directions of 
the coordinate axes and the angular displacements of any areas relative to it can be se- 
parated into kinds of symmetric p + and skew-symmetric p- factors relative to the plane 

II according to the natural criterion 

op+ (d = * pf (x) (1.3) 

where p (x) is the value of the factor p at the point J: E Q. 

Further, the m,of systems S, (p = 1, 2, . . . , m,) are investigated, each of which 

agrees with the system S and whose deformed states are converted by the representa- 
tion z,,. This latter means that any of the functions pP of the mentioned factors of the 
system & refers to the class of functions pa+ given in Q , each of them satisfying 
the equality 

Pw w = g 5 LP~ (g-l) pz’? (.h Vg E D:d (1.4) 
p=1 

where ‘ravPp is the pp-th element of the matrix tcrc., (g) of the operator ray (g). If it 
is a question of the forced vibrations of a regular system, then here and henceforth func- 
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tions of their amplitude values are understood to be the furrctions of the stress or strain 
state factors. 

The plane t,n contains the points t,z (n) of the cell t,S,, and the points tpx (IT) 
of the cell t,clSO. A set C of active relative couplings C (p) of the form p [t,s (IT)] = 
p [t,oz (II)] is superposed on some factors of the strain state at the points t,z (IT) 
and &as (R) . The set C, of relative constraints C, (p) between some factors at the 
points t$ (II’) and t r+l~~ (fII) is introduced analogo~ly, Namely, depending on their 
type, the following bounds imposed on their values at points belonging to the reflection 

planes 

a) a = 0, 
1 

v = 1; p1- h (II)1 = pl- Ix (I-I’)) = 0 (1.5) 

v = 2; p1+ Lx (l-I)1 = p1+ 15 o-r)] _I= 0 

b) I Q, I = n, 
t 

‘v = 1; px- [ix KI)l = px+ [x (II’)] = 0 

v = 2; PI+ Ix (II)1 = p1- Ix (IF)1 = 0 
40< Ia I< n, 7. = 0, -t 1, * 2, *.* 

P2+ IX (Ql)l = -PI+ lx (ti)l tg ra 

pz- [li’ (t,rI)l = p1- [z (QI)l ctg m 

PL?+Iz (W >I =I -pi [s (t,,n’)] tg w CI 

Pz- Ix (W)l = p1_- 1.z: (tJr)J ctg q LX 

are found successfully from (1.4) for these factors depending on their type. 
With respect to the set of cells ,‘$(O) (p = 1, 2, . . . . m,), each of which agrees with 

the cell t$a, it is natural to treat any condition for the factor P from (1.5) as some 
ideal mechanical constraint C&Jr) (p) (in the t,IJ plane) or C=$) (p) (in the t,lX’ 
plane), corresponding to the csv-th irreducible representation of the group E&(t) for fixed 
r . The lack of constraints for one of the kinds of strain state factors in (1.5) should be 
considered as passivity of similar constraints. Since a mutually one-to-one coupling 
CGLy(‘) (P> corresponds to each constraint C (p) from the set C (an analogous assertion 

is valid for the sets Cr and Cay:‘)), then passive couplings can also enter into the sets 

Cav(p) and CaVl(p) in addition to the appropriate subsets Cavt’t and c,,r of active coup- 
lings. A mechanical system consisting of nz,cells &(O) (IL = 1, 2, . . . . m,), on which 
the sets of couplings C,,(p) and C ..r(r) have been imposed is called the r-th element- 

ary cell in the sense of the cLv-th representation and is denoted by Sav(‘). It can be 
shown that the following theorem holds. 

Theorem 1. If a load gaVp acts on a system S , then the strain and stress state 

of its cell t,S, agrees with the corresponding state of the cell &(o) of the elementary 
system S,__(r) for which the load ~G(O) of the cell SP@) is determined by the relation- 
ship 

qbo’(+=q,“,(~)~ ~‘zE&QOI p=1,2,...,m, (1.6) 

2, If a finite mechanical system is regular, then under some boundary conditions a 
method to represent it as elementary can exist for which the system S will possess the 

symmetry group Df21h)* with the fundamental vector a* = a / n, where n is the num- 
ber of elementary cells relative to the group Dkv* which generate the initial finite 
system. An asterisk is henceforth used to denote a number of concepts associated with 
the group Dpf . 
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L-et C*, Cl*, K*, K1* be sets of active rigid constraints imposed on the relative 

F* and c,*) or absolute (K* and ~,*) displacements and rotations of adjacent 

cells of a regular system at any of its internal sections cut by the planes t,*n and 

t_r*rI’ (r = 1, 2, . ..). and let K’ and K,’ be sets of the same constraints imposed 
on its absolute displacements and rotations at the sections n and n’ ( t,* is under- 
stood to be the translation by a vector ra*). If the system 8 possesses the symmetry 
group L)s,,(f)* , then C = c* and cl = C,*. The following assertion then results from 

the above : a finite regular system is elementary relative to an infinite system S with 
symmetry group .cish(l)* in the sense of the av-th irreducible representation of the group 
Dsh(lf if K’ = K* U c&Q and K1’ = K1* /J ch’?,, where @,‘;’ and C&z: should 

correspond to the sets C” and C,*. 
The value of the criterion introduced is that regular one-dimensional systems satisfy- 

ing it admit of the above-mentioned simplifications in the computations. In fact, accor- 

ding to Theorem 1, instead of such systems considered as elementary in the sense of the 

av-th irreducible representation of the group D ,,(l),itis possible toinvestigate m,of sys- 
tems SEL whose load functions Qavp are determined by (1.6) and (1.4) rewritten as 

ma 

gpavp = Z: ~avpp(g)pavpr vg e 0% (2.1) 

p=1 

by using here the higher density of the symmetry group s>$F relative to DSh(I) l 

If 9 is understood to be the function in the group which yields to averaging by using 
the averaging functional introduced, then this functional can be determined by the usual 
method for the groups D,(l) and Gt [S]: 

The linear space L extended to the functions t,*PavEL fp = 1, 2, . . . , WZ; r = 0, 
1 f ..‘f n - 1) is invariant relative to all elements of the group .@?_$ on the basis of 
(2.1). The representation T of this group for which 

T (g*)p = g*p, Vg* E D%*, vp E L (2.3) 
operates in L , 

The operators T (tr*) (r = 0, t 1, t_ 2, . ..) form the representation T, of the 
subgroup G, in the space L. 

Let (p, f) be some scalar product of the functions p and f from the space L, which 

is bounded for the functions t,paVP (p I=I 1, 2, . . . . m,; )* = 0, 1, 2, ..,, n - 1). 
Let LIS introduce a new scalar product 

{$‘, f) = MD* k*& g*f)l (2.4) 

in the space L for which the representations ‘I’ and T, are unitary, and therefore, de- 

compose into irreducible representations of these groups. Because of the boundednessof 
the matrix elements of the representations T, T, and the irreducible representations of 

the groups considered, the averaging functionali introduced can be applied to these ele- 
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merits to establish known orthogonality properties [5]. 
The representations T and TaV are interrelated as follows: 

T (g) ~avp = rav (g> pet+ Vg E L&Y, p = i, 2, . . . , m, (2.5) 

There exists a linear combination of pa functions pa+ (p = 1, 2, . . . . m,) which, 

subjected to the translation t, (r = 0, + 1, &ii?, . ..) , - is converted in conformity with 

the vector uu. The space L,, c L generated by the functions t,* pa (r = 0, 1, . . ., 
n - I), is invariant relative to the representation T, on the basis of (1. l), (2.3) and 
(2.5), inducing a representation Tt, with the character Xta. in L,, . If the functions 

pav).L (P = 1, 2, *--, %) do not possess any special properties, then the functions 

t,*p, ]r = 0, 1, . . . . n - 1) are linearly independent and 

xta (tr*) = &, S.,neisa 

where 6,,,., is the Kronecker delta and s is an arbitrary integer. The number of times 

which the irreducible representation % of the subgroup G,* is encountered in the repre- 
sentation T,, is 

m, = M; lx,, (t,*)e+l = & 
where 

p =I n-i(a +j24, j=o,*i,*z ,... 

(2.6) 

(2.7) 

Let K, be the set of values of p which differ in absolute value, satisfy the inequal- 

ity (1.2) and are determined from (2.7). Then the set K_, consists of numbers of the 
form n-l (-_a - 2ni) and contains the number b if and only if m, = 1. Indeed, if 

CL + 2nj, = -a - 2xj, , then a = - (ii + i&t. Consequently, since L = 
L1, U L,(_,I,the set K, determines completely the irreducible stars {@ > which 
form a star of representations T. Moreover, there results from (2.6) that the representa- 

tion rap* of the group OF2 induced by the representation T in a linear shell La of 
the functions pa* and opt* converted under the effect of the translations t, (r = 0, 
+ 1, +2, . ..) to the vectors fiu and (-@r) , respectively, is irreducible. Meanwhile - 

n-1 

pp* = 2 e-irpt+*p,, VP E K, (2.8) 
T=O 

since in connection with (2.3), (2.5) and (2.7) 
n-1 

tl*pp*= 2 e+e-W *pa + e-i(n-l)P~,, (t )p = ip * T 
r=1 I a etP 

and by analogy n-1 

aqg = 2 eWr*apa, VPEK, (2.9) 
r=o 

In case the star {pu}, and therefore, the star (au} also refer to the types (a) or (b), 

then (2.9) is rewritten as n-1 

rag*&* = t,, (3) 2 e-‘Pitr*pa 
l-=0 

from which there follows that ‘cap* (‘5) == e,, (a). 
The following theorem has thereby been proved. 
Theorem 2. The space L generated by the functions tipa.+ (CL = 1, 2, . . . , ma; 

r = 0, 1, . . . . n - 1) decomposes into a subspace LB, orthogonal in the sense of the 
scalar product (2.4) and converted in conformity with the irreducible representations 
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rpi* if 0 < f fl I< ?E and with the representations 7pu* in other cases, where the 
real numbers @ differ in absolute value and are determined from (2,7) and (1.1). 

3, If we put p& = p&, for O< IpI I< n and ppo* = &,,P;~~ for p = 0 
or p = 1 3t 1 in the subspace Lb, convertible according to the representation Q*, 

then those of the functions pp,,* which are non-zero will form a basis therein, In the 

case of two-dimensional&y of the representation rep* for any g* E &h(l)* 

T (g)* P& = i & (g*) &,t cp = 1, 2 
n=1 

Here 

T k*h* = qll' k*h* + "~1 (g*)wa*, V E Kc (3.1) 
T (g*)op8* = -3312’ (g*h* + %2’ (g*)apij* 

r&& (g*) and ‘&, (g*) are qcp-th elements of the matrices q* (g*) and I+’ (g*). 

The last matrices are similar fA is the similarity conversion matrix) and therefore 
Apa* = PM* and Aap~* = ps2*. 

tit a,, and bq,, (rp, q = 1, 2) denote f~thermore the qq-th elements of the mat- 

rices A and A-‘. 
From the above it follows ‘L 4 

* 0 Pall = %$a* + Glapp 7 P; = 2 hap;,, qp* = 2 bmp;,, (3.2) 
n=1 II=1 

The validity of (3.1) and (3.2) can be confirmed directly for one-dimensional repre- 
sentations and it can be established by using (2.7) that 

ra(&?)==“d!3*(g) (O<(aI,(n), 7JkYED% VpEKa (3.3) 

By using the formulas (3.1) - (3.3), (2.8). (2.9), (2.2) (2.4) and the evident unitarity 
of the matrix A this affords the possibility of deducing the foIlowing important rela- 

tionships : n-1 n- 2 

P& = % 2 e-+%* i bqlp,, + azri 2 eir@tr* 2 b,,p,, = (3.4) 
r=o VP=1 r=o Q=l 

2 n-1 

ii?i 2 ~Zi*m @r*)tr*pa~ (q = I, z), VP E K, 
‘p=i r=Ll 

-siy( t,*P;l;Q, tr*PncJ h = 1, 21, WE Ka 
a Q==l r=o 
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she MLJ [Tap, (g)Tap, (g)l = 6,, 6,, 1/Z for 0 < 1 a 1-C 35 , while 

-‘If& rapn (g)rt,,, (g))l = Gp-pGnvSpv, for 1 a 1 = z or a = 0 but pa** = &pa”*. 
The expression (3.6) is rewritten as 

(3.7) 

The equality (3.7) means that the system of non-zero functions pp,,* from all the 

subspaces .& C L forms an orthogonal basis of the space L in the sense of the scalar 
product.@, 5). According to (3.5) and (3.7) 

In this connection, the fact that pay E L makes the following assertion evident. 
Theorem 3. The functions pay are representable as 

If m&s the number of elements in the set K,, then Theorems 1 and 2, the superpo- 

sition principle at the basis of Theorem 3, as well as (2. ‘7) and (3.4) permit the investi- 
gation of mu uniquely defined null elementary systems Ss$O) (in the sense of represen- 

tations of the group Drh(l)*) in place of Snu(p) . The results obtained by using (1.4) can 

be extended to the linear system &fs, This indicates the mechanical meaning of the 
simplifications inserted in the computation of regular systems for a number of boundary 
conditions. 

In conclusion, two circumstances should be noted. Firstly, all the above remains true 
even for loads for which the dimensionality of the space Lt, is less than IZ. In this case, 
according to (3.4), the load functions of the systems 5’s, (O)* turn out to be identically zero 

for some valuesof fi . Secondly, the theorems presented are applicable for finding the 

natural frequency spectrum or the critical forces. As is easy to see, the spectrum of the 

elementary system S,,(r) is a combination of appropriate spectra of the systems #ii*. 
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